Morita Equivalence of Simple Noetherian Rings
نویسندگان
چکیده
منابع مشابه
Fully Bounded Noetherian Rings
Let i : A → R be a ring morphism, and χ : R → A a right R-linear map with χ(χ(r)s) = χ(rs) and χ(1 R) = 1 A. If R is a Frobenius A-ring, then we can define a trace map tr : A → A R. If there exists an element of trace 1 in A, then A is right FBN if and only if A R is right FBN and A is right noetherian. The result can be generalized to the case where R is an I-Frobenius A-ring. We recover resul...
متن کاملOn Morita equivalence for simple Generalized Weyl algebras
We give a necessary condition for Morita equivalence of simple Generalized Weyl algebras of classical type. We propose a reformulation of Hodges’ result, which describes Morita equivalences in case the polynomial defining the Generalized Weyl algebra has degree 2, in terms of isomorphisms of quantum tori, inspired by similar considerations in noncommutative differential geometry. We study how f...
متن کاملOn Nonnil-Noetherian Rings
Let R be a commutative ring with 1 such that Nil(R) is a divided prime ideal of R. The purpose of this paper is to introduce a new class of rings that is closely related to the class of Noetherian rings. A ring R is called a Nonnil-Noetherian ring if every nonnil ideal of R is finitely generated. We show that many of the properties of Noetherian rings are also true for Nonnil-Noetherian rings; ...
متن کاملRigid left Noetherian rings
Let R be an associative ring. A map σ : R → R is called a ring endomorphism if σ(x+y) = σ(x)+σ(y) and σ(xy) = σ(x)σ(y) for all elements a,b ∈ R. A ring R is said to be rigid if it has only the trivial ring endomorphisms, that is, identity idR and zero 0R . Rigid left Artinian rings were described by Maxson [9] and McLean [11]. Friger [4, 6] has constructed an example of a noncommutative rigid r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1979
ISSN: 0002-9939
DOI: 10.2307/2043134